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OVERLAP INTEGRALS FOR ATOM-METAL SURFACE INTERACTIONS

William C. Murphy and Thomas F. George
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University of Rochester
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Abstract

,Atom-metal surface overlap integrals are of utmost importance in surface

energy calculations. Direct numerical evaluation of these triple integrals can

be very time consuming. However, we have developed an exact algebraic

expression, where formulas for the coefficients are given for both the general

case and the special case where the parallel wavevector is zero. Some

numerical examples of the overlap for H on Al are given.
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1. Introduction

The interaction of an adatom with a metal surface is of utmost Importance in

1-6surface physics (and surface science in general). Several researchers have

expended a great deal of effort In its determination. To evaluate this

interaction potential, one common method is to first expand the total

wavefunction In a mixed basis set,

(r) - C X a(r) + c 4k(r) (1) Ia a k_.,.k
a k

where a (r) are wavefunctions that are localized on the adatom with quantum
a

number a, and 0k(r) are the delocalized wavefunctions of the metal with quantum

number k. One of the difficulties Involved with such an expansion is the need -.

to remove the overcompleteness. Lundqvist has suggested that this can best be

done by the requirement

ck Sa,k -0 (2)
k k a;k

where the overlap integral is given by

S a <alk> (3)

ak

Consequently, a knowledge of this overlap is needed to remove the

overcompleteness. Furthermore, to solve the secular determinant for Eq. (1),

one needs to know the values of the overlap integral and two interaction

integrals. The interaction integrals in turn can be related to each other and

the overlap via the Hermitian property r

E S kVL = E S + <alvaik> (4)a k a Lk Sa,k a
*1;
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where E and V' are the eigenvalue and potential of the isolated atom, and E p.

a a k

and VL are the elgenvalue and potential of the isolated metal. Consequently, an P.

evaluation of the overlap is vital for solving the secular deteminant.

In this paper, we show that a closed form expression for the overlap can be

obtained. We define our system in the next section, and following this we give

the details of evaluating S Finally, ' discuss our results and suggest
a,k'

further uses of this calculation.

2. The System

We shall examine the case of a single atom impinging on a simple metal

surface. The electrons associated with the atom will be approximated by Slater

orbitals, 7

1 12 '-.'"

Ita ( r ) =[(n ]  r e- r g (60€ (5)

a (2n)!I

where Y (e,) are the spherical harmonics, am(n,i,m) are the atomic quantum

numbers, and is the orbital factor. The origin of our system is chosen to be

on the surface; therefore,

r r + 2 (6)'

where z and r11 are the position of the electron perpendicular and parallel to

the surface, and z a is the distance of the atom from the surface. The Slater

orbital choice was made for computational efficiency. Furthermore, if V is
a

Coulombic, the interaction integral for the atomic potential will be

<alV >- 2Ez S (7)

a ~ TT a', k'V'(2n) (2n-1)a k'i <

where Z is the nuclear charge and a' = (n-1,j,m). Consequently, all integrals

of interest can be written in terms of the overlap.

. - - . ... .........-... . .. . ..-.. .:.,-.. .. *.. -. ... , . %. .-.
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Previously, the metal has been modeled within the truncated jellium1-5

approximation. Instead of using the numerical wavefunctions from this

model, we shall consider the metal electrons as particle-in-a-box. Such
'

wavefunctions are good approximations to the jellium model and provide the

basis set necessary for a more exact approach within the nearly-free-electron

8
approximation. These particles-in-a-box wavefunctions are

-12 kit *r0 ( ) e f (z) ,(8) k'

where A is the surface normalization area, and k is the component of the

S I-

electronic wavevector parallel to the surface. f(z) is the one-dimensional

particle-in-a-box wavefunction:

21/2.'2
f(z) = () sin(kz* e ) (9a)

z k

for -L < z < 0,

11/22 -qz.,"
f(z) - () sin k e (9b)

for z > 0, and

2- in-L eq(z+L)
f(z) = 2 sin(-kL + e (9c)

L z k

for z < -L, with

S-/2W- k 2  (10)

k
tan8 - - (11)

k q

where L is the thickness of the metal, k is the component of the electronic wave-
z

vector perpendicular to the surface, and W is the sum of the work function and

the Fermi energy.

To calculate the overlap of the wavefunctions given in Eqs. (5) and (8), we

must solve the Integral

.*'..%* *.a.**.*.-.**. .. .a--................................................................................

..................................................- ,~-. . . . . . . . . . . . . .
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-1/2 (20
2n+1  d n-1 -Zr m* 1k *r

S A A (n- ]  dr r e Y (' 'i) e f(z~za ) (12) 7
a,k s 8) a

where the z is needed in the metal wavefunction since our origin is centered on
a ....

the adatom. At first this Integral appears quite complicated, due to the broken

symmetry caused by the surface. However, we can carry out an evaluation by . ",

means of a Fourier expansion.

3. Evaluation

The metal wavefunction, Eq. (8), can be represented by a Fourier transform,

•k(r) = di 4k(s) eis 'r (13)
k4k

where s is the Fourier coordinate. The transform of the wavefunction is given

by
f(s ) -" Z °

t (S) = - 6(k -) (14)k 12 I I

with

f(s) - Idz e z f(z+z a) , (15)
z - ."a)

where 6(-s) Is the Dirac delta function. Using Eq. (9) in Eq. (15), we obtainII I .

1 cc/ is (Z-z)
f(sz) = -() sin6k dz e e-

z 2-r. - -
0

-L is (Z-z) 0 is Z(z-z a
+ sin(5 k L) 5 z a e + dz e sin (k z+--.

k- -L-

Evaluating these integrals is straightforward and gives

-iS z a  -iSzZa*L)

1/2 1 sine, e I sin(e -k L) e

f(~ ) -k kz
z 2 L s + iq "iq

z

-is z ie -lPk  -i[(k +s )L+Oe i[(kz-sz)L+..
e za + e e z z k e z-z k(17

2 +s k-s k+s k -s
2Sz z z z z z z

Combining Eqs. (12) and (13), we can express the overlap as

I -.'-

. . . .. . . . ** *-*. .*** *.'. .-.- 0.-%
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2n 1/2
ak (2) k"(ak 2n)! ] '; k(;) dr rn -  •-r y~m(¢,€) eiS'r .(1P )t

9The exponential can be expanded in terms of the spherical harmonics,
'.

4, t ' m'-

is*r i I
e 4w m' * i , (,'(e, )J£,( (19)

'-0 m'=-1'

where J,,(sr) is the spherical Bessel function. Using this in Eq. (18) and the

orthonormality of the spherical harmonics, the overlap reduces to

r I 1/2
= +. m*n+1 .- "&.."

Sak = (2n)' us 0(s) Ym*(es, )  dr r j£(sr) er (20)

By Eq. (14), this can be further reduced to :--'

1/2

s a[(21+) (E-ImI)! (2E) 2n+ 1 1 12
=ak 7J4 (+Iml)! (2n)! A s

- imok JSzc n+1 -Cr "

e ds f(s ) Pln( -  dr r j(sr) e (21)

S s
where ¢' is the azimuthal angle In k-space, P ml( - ) is the associated Legendre

function, and s is now given by

/ 2
s-v +s (22) .

10The spherical Bessel function can readily be expanded as

sr sr t-£-1-'-

t(sr) t ( t)! [eisr + e) (1) ] (23)
"9. 2sm -0 t!(9-t)U(2sr)t

U'-Ih

Using this expression, we can evaluate the inner integral in Eq. (21): ,

S".%.

>' '" " >..-"."."-.".'-.-.-;-"-"-'-.'., .. % -% :-':';-.' .- '''.- '-.',-.-'':.,'-;- .;,,.;-''-...-. --....'......
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A"11 2  k I (I*t)!(n-t)! '' .

S -A e D
a,k s t! (t-t.)!

,~ ~~t [ [ --

J ds( _ Pnz)[ +1 I* (-1) n-t+1 ] (24)
(2s) (C-is)nti

where for convenience, we define

112

D. 4r(2t.+) (t-lml)! (2 )2n+ 11(2)41Li~m) (2n)!

In order to evaluate the integral in Eq. (24#), it is easier to examine the

integrand with the fractions combined:

Sa,< -A I1/2 i k D t- +t)! (n-t)! ( t! (£-t) ' dS f(S ) P  ml ( ) 1

t. 1 0 (2s)t+  .:,

n--1 (n-tn-!tj [+(-1) Js
L (n-t+1-j)! J! E 2 2 2 t (26)n-t"

j-0 "k + s.nt1'";

Eq. (26) can be solved by considering the integral as extended over a semicircle

in the negative complex plane. The total integral over this enclosed path givcs

$ds .. + fds Z... -2ri ,i (27)
-XC "

where the integrand is the same as in Eq. (26). The C in the second integral

implies integration over the semicircle part of the curve, and R. are the residues7

of the poles contained within the total curve. Since the integral is in the

negative complex plane, the exponentials in f(s ) goes to zero at infinity;
z

the second integral vanishes. Consequently, the integral in Eq. (26) only

depends on the poles in the negative complex plane. Inspection of

the integrand reveals three such poles: (1) a pole of order 1 at sz  -iq

contained in f(sz); (2) a pole of order n+1 at sz - -i- -k from the fraction

In the sum; and (3) a pole of order 9 at sz . -1kll due partially to the Legendre

function and partically to the fraction it multiplies.

Using Eq. (17), we can easily determine the residue at the first pole:

" ' " .. .. i :' . . .. . • . . . . . . . . . . . .' - " "" " " ' +
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1. 2ii LA j 2 D~~ a it! (-t)! I

q -ik

Ftls )n~ n- t+1e (2!(e)

(2 5 i+ 2~ q -sk-

Consequenlyder ct ow wrlute theotew residues, we first asin

F~is +

z Kz z z

t-11
HRt) _nt~ 1II~z 2'' +[-Q~ F(x)(

LA I. Ix ( H (9
s t~j +1 n-1 1

Uosnguenty'w cuaa no rit the difrenieatno th rodct we obtaias
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R2 )1/2 -inek D n n! n-h _n-h ZaR " - e n;T -1 _nh ..

-- LA (n-h)! h! aS h-O"..

n+
dh  x=/F 22/+k

dx h1

[f we now define

_n-h~l hn1(n-) h!x .k FZ' 2 (3 2) -- "
• dxh  ) - k : ;

we can then write the second residue as

imk n n- Z

2A aLA (34)
s h=Oa

Similarly, we can obtain the residue at s - -1k as
z I

Z.-1 -k z

R i 2 mk( Chza e a(35)
3 2T LA h=O

for Z > 0. If 1 = 0, there is no residue at sz  -ik The coefficients are

given by

( - [x-k,] F(x)} (36)
h (i-i-h)! h! dxh

In the spirit of the second and third residues, we can rewrite the first, Eq.

(2b), as

1/2 1m4k qza
R 1-(2) e Ae , (37)
1 Ft L A

5

%. . . .

,..,.#.. * ... - - - ..-.p..*.**.*.....................................................
. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .
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where

A * D sinek (t+t)!(n-t)! "nI("

,, [ .1 .+ (-1) t  -  ,'-k )n-L1 n - )+t+1
] "(3...

+2 2 22)""..

Since we now have the value of the residue at each pole, we are able to obtain

the overla"

3 i

a,k =-21rri (3,)-

where the minus sign is due to our integrating in the clockwise direction.

Using Eqs. (3'1), (35) and (37), we obtain

11I2 -lm Ae q za  n zn~] z ,.

Sa,k = LA e { + [ B ah e 1 -.a
s h=O a

L - C Z -l-h i a (f) ,

h= a

Thus, we have reduced the overlap integral to a simple algebraic expression in

terms of the distance of the adatom from the surface. Furthermore, as we shall

see below, A, Bh and Ch are real; consequently, all imaginary contributions to

the overlap are determined by the simple phase factor in Eq. ('0).

4. Numeri. 'edures

In order to . )ute values for the overlap, Eq. (NtO), one must solve for the

coefficients. T' procedure for A is straightforward, and its value is given by

Eq.h an Ch however, dependent on several differentiations of the

h.. ..... .. . ... . -... ............. . . ... .... .. ... .
a," -" . . .. """"- . ."""" -.- ' ,-,.,".-."." "-"' "•"•• ••-" "-" "-".. , "-" - ''.L ,"_... ''""'



11

function F(isz). One simplification is obtained by observing that F(is ) isZ z

completely real. This can be shown by making the substitution x - is in Eq.
Z

* (29):

F + k cosek - x sine k  I (Z+t)! (n-t)! IMIF(x)- [ix-q + z ] k[ t-O £-)

x-q 2 2 t.O (Z-t! L P9 x2._2-

2 1 n-t+l 2 n-t+

To proceed with the evaluation of B and Ch, one could obtain a closed-form

h ho

expression by repeated use of Leibnitz' formula or attempt to use a numerical

12
approach based on finite differences. However, a simplified form of the overlap

. can be obtained for the special case of k l 0. Since the overlap would be
i

expected to be greatest for k large (k small), one could use this special case

*[ as a basis for obtaining a general solution.

If we assume that k =, the associated Legendre function in Eqs. (3) and
11

* (,41) will vanish unless m = 0. Consequently, Sa,k = 0 for k = 0 and m * 0.

For the case where m = 0, to evaluate Ch one must include in Eq. (29) the terms

that depend on L from Eq. (17) since these terms do not vanish at s = 0.
z

However, the value of these terms assures that F(Is ) and, consequently, Ch goes
zh

to zero. Therefore, for k, = 0 and m = 0, the overlap becomes

2 a/2 n hSa =(L-) {A e + [ = B za ] e } (42)a,k s.0h a

where A can now be simplified to the form
-~ £ t ? t-t{(-1

A Dsine kO + (
A t t! (k-t)! (2q)t+1 1 + (-1 ) .(

t q

Furthermore, using Eqs. (3a) and (41), Bh reduces to

* .



.. _ i -h

B (t+t)!(n-t)!
h (n-h)! h! tot! (L-t)!

sin - xosn
d k z k xsinek (44)

dx h  x x 'k (2x) t+llx=&
z

Another application of Leibnitz' formula leads to

Bh (_-h D (£h i +t)! (n-t)! (-I) t:7
h (n-h)! t=O t! (i-t)! (h-t)!

dh-t sinO k cose - x sine

dx z x2 k2  (2x)t lx.'Z

where (t,h) implies using either £ or h, whichever Is smaller.

We have evaluated the overlap integral, Eq. (42), for a variety of

interacting orbitals for hydrogen atom on the surface of aluminum, and the

results are depicted in Fig. 1. As can be seen from this figure, the overlap

becomes large as n becomes large, which is due to the fact that the overlap does

not become a maximum until the volume occupied by the electronic wavefunction of

the atom approaches the size of the metal. This happens at the point of

dissociation, n

The peculiar structure of the 2s overlap is caused because q t E, i.e., at

the exact point of equality A cancels b Consequently, if the atom Is on the
0'

surface (z = 0), the overlap is zero. For q < &, the metal surface

damping dominates the overlap at small z; for q > F, the atomic damping

dominates.

' -LL .L--- - t~ -%. -I&= P Ih """6 """" • " : ' " "L'= m~b lm==6." " """ '% ,W" " =mS'|W| "' - " '" " ," b".'" ... . .. ...... .. .. .."",'' % " " = "' °" '" % " '" " % " "' """% " - "' " _%* ""-'" % '" %F.
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5. Discussion

We have demonstrated that the overlap Integrals for the wavefunctions of an *-

atom with a metal surface can be written as algebraic expressions In term of the

distance from the surface. Furthermore, we have shown that these expressions

are real except for a simple multiplicative phase factor. Analytical

* expressions for the coefficients of the overlap formulas have also been pre-

sented. Solving these closed-form expressions for the overlaps will be much

more computationally efficient than direct numerical solution of the overlap

* integrals. Since other integrals of interest in surface calculations can be

written in terms of the overlaps, this efficiency will be transferred to atom-L

metal surface potential energy calculations. Such integrals are also extremely

* useful in studying such problems as atom-surface charge transfer, scattering and

energy coupling. These problems are of ongoing interest In our research.
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Figure Caption

1. The overlap Sa ,(z2) in units of the normalization factor, (2/LA_)1
/2

versus the distanci from the surface, z , in atomic units. The 8ata are for

hydrogen s orbitals overlapping the Fergi wavefunction of aluminum. The
curves 3re labelled by the principal quantum numbers.
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